18luck网站

18luck网站電子設計 | 18luck网站Rss 2.0 會員中心 會員注冊
搜索: 您現在的位置: 18luck网站 >> 18luck平台 >> 電源專欄 >> 正文

PFC應用:有源PFC在現代逆變電源中的應用

作者:佚名    文章來源:本站原創    點擊數:    更新時間:2011-3-21

引言

由於(yu) 對性能要求的不斷提高,特別是當前“綠色”電源的呼聲越來越高,現代逆變器係統對功率因數校正和電流諧波抑製提出的更高的要求。本文對功率因數校正在現代逆變電源中的應用作了簡要介紹。分析比較了幾種帶有PFC功能的逆變器構成方案,分析結果表明帶單級隔離型PFC電路的兩(liang) 級逆變器具有更高的可靠性,更高的效率和更低的成本。

1  現代逆變電源係統的組成和結構

隨著各行各業(ye) 控製技術的發展和對操作性能要求的提高,許多行業(ye) 的用電設備都不是直接使用通用交流電網提供的交流電作為(wei) 電能源,而是通過各種形式對其進行變換,從(cong) 而得到各自所需的電能形式。現代逆變係統就是一種通過整流和逆變組合電路,來實現逆變功能的電源係統。逆變係統除了整流電路和逆變電路外,還要有控製電路、保護電路和輔助電路等。現代逆變係統基本結構如圖1所示。

圖1 逆變係統基本結構框圖

現代逆變係統各部分功能如下:

 1. 整流電路:整流電路就是利用整流開關(guan) 器件,如半導體(ti) 二極管、晶閘管(可控矽)和自關(guan) 斷開關(guan) 器件等,將交流電變換為(wei) 直流電。除此之外,整流電路還應具有抑製電流諧波和功率因數調整功能。

2. 逆變電路:逆變電路的功能是將直流電變換成交流電,即通過控製逆變電路的工作頻率和輸出時間比例,使逆變器的輸出電壓或電流的頻率和幅值按照人們(men) 的意願或設備工作的要求來靈活地變化。

3. 控製電路:控製電路的功能是按要求產(chan) 生和調節一係列的控製脈衝(chong) 來控製逆變開關(guan) 管的導通和關(guan) 斷,從(cong) 而配合逆變器主電路完成逆變功能。

4. 輔助電路:輔助電路的功能是將逆變器的輸入電壓變換成適合控製電路工作需要的直流電壓。對於(yu) 交流電網輸入,可以采用工頻降壓、整流、線性穩壓等方式,當然也可以采用DC-DC變換器。

5. 保護電路:保護電路要實現的功能主要包括:輸入過壓、欠壓保護;輸出過壓、欠壓保護;過載保護;過流和短路保護;過熱保護等。

2 逆變電源係統功率因數及諧波幹擾問題分析

對於(yu) 逆變器的整流環節(AC-DC),傳(chuan) 統的方法仍采用不控整流將通用交流電網提供的交流電經整流變換為(wei) 直流。雖然不控整流器電路簡單可靠,但它會(hui) 從(cong) 電網中吸取高峰值電流,使輸入端電流和交流電壓均發生畸變。也就是說,大量的電器設備自身的穩壓電源,其輸入前置級電路實際上是一個(ge) 峰值檢波器,在高壓電容濾波器上的充電電壓,使得整流器的導通角縮短三倍,電流脈衝(chong) 成了非正弦波的窄脈衝(chong) ,因而在電網輸入端產(chan) 生失真很大的諧波峰值幹擾,如圖1.2所示。

(a) 電網輸入端電流和電壓的畸變    (b)峰值電流中的各次諧波分量頻譜
圖2  傳(chuan) 統整流電路輸入端電網電壓和電流失真與(yu) 諧波幹擾分量圖

由此可見,大量整流電路的應用使電網供給嚴(yan) 重畸變的非正弦電流,對此畸變的輸入電流進行傅立葉分析,發現它不僅(jin) 含有基波,還含有豐(feng) 富的高次諧波分量。這些高次諧波倒流入電網,引起嚴(yan) 重的諧波汙染,使輸入端功率因數下降,將造成巨大的浪費和嚴(yan) 重危害。輸入電流諧波的危害主要有:

(1)使電能的生產(chan) 、傳(chuan) 輸和利用的效率降低,使得電器設備過熱、產(chan) 生振動和噪聲並使絕緣老化,使用壽命縮短,甚至發生故障或燒毀。

(2)可引起電力係統局部並聯諧振或串聯諧振,使諧波含量放大,造成電容器等設備燒毀。

(3)使測量儀(yi) 器產(chan) 生附加諧波誤差。常規的測量儀(yi) 器是設計並工作在正弦電壓、電流波形的,因此在測量正弦電壓和電流時能保證其精度,但是這些儀(yi) 表用於(yu) 測量非正弦量時,會(hui) 產(chan) 生附加誤差,影響測量精度。

(4)諧波還會(hui) 引起繼電保護和電動裝置誤動作,使電能計量出現混亂(luan) 。

現代逆變電源係統對功率因數校正和電流諧波抑製提出了更高的要求。為(wei) 了減小AC-DC交流電路輸入端諧波產(chan) 生的噪聲和對電網產(chan) 生的諧波汙染,以保證電網供電質量,提高電網的可靠性;同時也為(wei) 了提高輸入功率因數,以達到節能的效果,不少國家和國際學術組織都製定了限製電力係統諧波和用電設備諧波的標準和規定,如國際電氣電子工程師協會(hui) (IEEE)、國際電工委員會(hui) (IEC)和國際大電網會(hui) 議(CIGRE)都推出了各自建議的諧波標準,其中最有影響力的是IEEE519-992和IEC1000-3-2,我國也先後於(yu) 1984年和1993年分別製定了限製諧波的規定和國家標準。

因此在現代逆變電源係統中,功率因數校正電路是一個(ge) 不可或缺的重要組成部分。功率因數校正可以分為(wei) 無源功率因數校正技術(Passive PFC)和有源功率因數校正技術(Active PFC)。無源功率因數校正技術是采用無源器件,如電感和電容組成得諧振濾波器來實現PFC功能;有源功率因數校正技術則采用了有源器件,如開關(guan) 管和控製電路來實現PFC功能。現代逆變電源係統應用的多為(wei) 有源功率因數校正技術,可以將輸入電流校正成與(yu) 輸入電壓同相的正弦波,將功率因數提高至接近1。

3  帶有PFC功能的逆變器構成方案

具有功率因數校正功能的逆變器構成方案通常有三種:三級構成方案Ⅰ、三級構成方案Ⅱ和兩(liang) 級構成方案。

1. 三級構成方案Ⅰ。其結構如圖3所示。第一級是50Hz工頻變壓器,用來實現電氣隔離功能,從(cong) 而保證電源設備的安全性,免受來自高壓饋電線的危險。第二級是功率因數校正電路,用來強迫線電流跟隨線電壓,使線電流正弦化,提高功率因數,減少諧波含量,其輸出是400V左右的高壓直流。第三級是DC-AC模塊,用來實現逆變功能,即通過控製逆變電路的工作頻率和輸出時間比例,使逆變器的輸出電壓或電流的頻率和幅值按照人們(men) 的意願或設備工作的要求來靈活地變化。

圖3三級構成方案Ⅰ主電路框圖

這是一種較早采用的方案,技術也比較成熟,其主要優(you) 點是電路結構簡單,實現較為(wei) 容易。主要缺點是電能經過三級變換,降低了逆變器的可靠性和效率;工頻隔離變壓器體(ti) 積龐大、笨重、耗費材料多;PFC級的輸出,即DC-AC的輸入為(wei) 400V左右的高壓直流電,這就對許多需要逆變級具有低壓輸入的應用場合產(chan) 生了限製。比如鐵路用逆變器和航空用逆變器等多個(ge) 重要的逆變器應用領域都需要110V的正弦交流電輸出,若采用這種構成方案,則不僅(jin) 可靠性難以得到保證,而且逆變器的效率會(hui) 進一步降低,一般不會(hui) 超過80%。

2. 三級構成方案Ⅱ。其結構如圖4所示。第一級是PFC級,其結構功能與(yu) 三級構成方案Ⅰ中的PFC電路相同。第二級是DC-DC級,用來調節PFC輸出電壓和實現電氣隔離。第三級是DC-AC模塊,其結構功能與(yu) 三級構成方案Ⅰ中的DC-AC電路相同。這是目前應用較多的一種方案,是中大功率應用的最佳選擇。

圖4 三級構成方案Ⅱ主電路框圖

這種方案的主要優(you) 點是去掉了笨重龐大的工頻變壓器;每一級均有各自的控製環節,使得該電路具有良好的性能;DC-AC的輸入電壓可根據逆變輸出的不同要求進行調整,適用於(yu) 各種功率場合,效率較三級構成方案Ⅰ有所提高。缺點是各級都需要一套獨立的控製電路,增加了器件數目和控製電路的複雜性;由於(yu) 電能同樣經過三級變換,使得逆變器的可靠性和效率仍然不能令人滿意。

3.兩(liang) 級構成方案。 針對以上兩(liang) 種方案的不足,人們(men) 提出了一種兩(liang) 級構成方案。該方案將三級構成方案Ⅱ中的前兩(liang) 級合並為(wei) 一級,使PFC和DC-DC級共用開關(guan) 管和控製電路(如圖5所示),並通過高頻變壓器得到可調PFC輸出直流電壓,實現電氣隔離,如圖5所示。這種方案保持了三級構成方案Ⅱ中的優(you) 點,而且改進了三級構成方案Ⅱ的不足之處。總之,可靠性高、效率高、成本低是這種逆變器構成方案最顯著的優(you) 點。

圖5 典型的單級PFC變換器電路圖

4 結論

將這三種逆變器的構成方案進行比較後不難發現,它們(men) 的逆變部分結構和功能完全相同,區別僅(jin) 在於(yu) 整流環節,即通過不同方法產(chan) 生經隔離和功率因數校正後的(可調)直流電壓,來作為(wei) 逆變級的輸入。由於(yu) 單級PFC電路將PFC級和DC-DC級結合在一起,能量隻被處理一次,用一個(ge) 控製器就能完成輸入PFC和輸出電壓調節功能,因此非常適用於(yu) 逆變電源的前級整流環節。采用單級PFC電路的逆變器具有更高的可靠性,更高的效率和更低的成本。所以,帶單級PFC電路的兩(liang) 級逆變技術成為(wei) 電力電子領域研究的一個(ge) 熱門課題。

盡管單級PFC電路具有上述優(you) 點,但是與(yu) 傳(chuan) 統的兩(liang) 級式PFC變換器相比,它要承受更高的電壓應力,有更多的功率損耗。這些問題在開關(guan) 頻率較高時顯得尤為(wei) 突出,影響了變換器工作的可靠性和開關(guan) 頻率的進一步提高,也限製了其在大功率場合的應用。為(wei) 此,近些年又提出了各種軟開關(guan) 技術,如零電流開關(guan) (ZCS)、零電壓開關(guan) (ZVS)、零電壓轉換-脈寬調製(ZVT-PWM)、零電流轉換-脈寬調製(ZCT-PWM)等,有效地解決(jue) 了這些問題,使得單級PFC電路在逆變電源係統中具有了更廣闊的應用前景。

Tags:pfc,電源,逆變器電源  
責任編輯:admin
  • 上一篇文章:
  • 下一篇文章:
  • 請文明參與討論,禁止漫罵攻擊,不要惡意評論、違禁詞語。 昵稱:
    1分 2分 3分 4分 5分

    還可以輸入 200 個字
    [ 查看全部 ] 網友評論
    關於我們 - 聯係我們 - 廣告服務 - 友情鏈接 - 網站地圖 - 版權聲明 - 在線幫助 - 文章列表
    返回頂部
    刷新頁麵
    下到頁底
    晶體管查詢