18luck网站

18luck网站電子設計 | 18luck网站Rss 2.0 會員中心 會員注冊
搜索: 您現在的位置: 18luck网站 >> 基礎入門 >> 無線電技術 >> 正文

X和Ku波段小尺寸無線電設計

作者:佚名    文章來源:本站原創    點擊數:    更新時間:2018-11-11

衛星通信、雷達和信號情報(SIGINT)領域的許多航空航天和防務電子係統早就要求使用一部分或全部X和Ku頻段。隨著這些應用轉向更加便攜的平台,如無人機(UAV)和手持式無線電等,開發在X和Ku波段工作,同時仍然保持極高性能水平的新型小尺寸、低功耗無線電設計變得至關(guan) 重要。本文介紹一種新型高中頻架構,其顯著削減了接收機和發射機的尺寸、重量、功耗與(yu) 成本,而係統規格不受影響。由此產(chan) 生的平台與(yu) 現有無線電設計相比,模塊化程度、靈活性和軟件定義(yi) 程度也更高。

簡介

近年來,推動RF係統實現更寬帶寬、更高性能、更低功耗,同時提高頻率範圍並縮小尺寸的力量越來越強大。這一趨勢已成為(wei) 技術進步的驅動力,RF器件的集成度遠超以往所見。有許多因素在推動這一趨勢。

衛星通信係統為(wei) 了發送和接收每天收集到的數TB數據,對數據速率的要求已達到4 Gbps。這一要求推動係統的工作頻率提高到Ku和Ka波段,原因是在這些頻率上更容易實現更寬的帶寬和更高的數據速率。這勢必導致通道密度更高,每通道的帶寬更寬。

在信號情報領域,性能要求也在不斷提高。此類係統的掃描速率越來越高,故而要求係統具有快速調諧PLL和寬帶寬覆蓋範圍。對尺寸更小、重量更輕、功耗更低(SWaP)和集成度更高係統的需求,源於(yu) 業(ye) 界希望在現場操作手持式設備,以及希望提高大型固定位置係統的通道密度。

相控陣的發展同樣得益於(yu) 單芯片RF係統集成度的提高。集成讓收發器越來越小,使得每個(ge) 天線元件都可以有自己的收發器,進而促使模擬波束賦形向數字波束賦形轉變。通過數字波束賦形,單一陣列可以同時追蹤多個(ge) 波束。相控陣係統應用廣泛,包括天氣雷達和定向通信等。由於(yu) 低頻信號環境變得越來越擁堵,許多應用不可避免地要求提高頻率。

本文介紹如何利用一種高度集成的架構來應對上述挑戰,該架構將AD9371收發器用作中頻接收機和發射機,使得整個(ge) 中頻級及其相關(guan) 器件都可以從(cong) 係統中移除。文中比較了傳(chuan) 統係統與(yu) 提議的架構,並舉(ju) 例說明了如何通過典型設計流程來實現此架構。具體(ti) 說來,使用集成收發器可以實現一些高級頻率規劃,這是標準超外差樣式收發器做不到的。

超外差架構概述

超外差架構由於(yu) 能實現很高的性能而成為(wei) 多年來的首選架構。超外差接收機架構通常包括一個(ge) 或兩(liang) 個(ge) 混頻級,混頻級饋入模數轉換器(ADC)。典型超外差收發器架構如圖1所示。

圖1. 傳(chuan) 統X和Ku波段超外差接收和發射信號鏈

第一轉換級將輸入RF頻率上變頻或下變頻至帶外頻譜。第一IF(中頻)的頻率取決(jue) 於(yu) 頻率和雜散規劃、混頻器性能以及RF前端使用的濾波器。然後,第一IF向下轉換為(wei) ADC可以數字化的較低頻率。雖然ADC在處理更高帶寬的能力上取得了巨大進步,但為(wei) 達到最優(you) 性能,其頻率上限目前是2 GHz左右。輸入頻率更高時,必須考慮性能損失,而且更高輸入頻率要求更高時鍾速率,這會(hui) 導致功耗上升。

除混頻器外,還有濾波器、放大器和步進衰減器。濾波用於(yu) 抑製不需要的帶外(OOB)信號。若不加抑製,這些信號會(hui) 在目標信號上產(chan) 生雜散,使目標信號很難或無法進行解調。放大器設置係統的噪聲係數和增益,提供足夠高的靈敏度以接收小信號,同時又不是太高以至於(yu) ADC過度飽和。

還有一點需要注意,此架構常常需要使用表麵聲波(SAW)濾波器以滿足ADC嚴(yan) 格的抗混疊濾波器要求。SAW濾波器會(hui) 提供急劇滾降性能以滿足這些要求,但同時也會(hui) 帶來明顯的延遲和紋波。

圖2所示為(wei) 一個(ge) X波段超外差接收機頻率規劃示例。該接收機希望接收8 GHz和12 GHz之間的信號,帶寬為(wei) 200 MHz。目標頻譜與(yu) 可調諧本振(LO)混頻,產(chan) 生5.4 GHz IF。然後,5.4 GHz IF與(yu) 5 GHz LO混頻以產(chan) 生最終的400 MHz IF。最終IF範圍是300 MHz至500 MHz,這是很多ADC能夠發揮良好性能的頻率範圍。

圖2. X波段接收機頻率規劃示例

接收機的重要特性

除了熟知的增益、噪聲係數和三階交調截點特性以外,影響接收機架構頻率規劃的其他典型特性包括鏡像抑製、IF抑製、自發雜散和LO輻射。

· 鏡像雜散—目標頻段之外的RF,其與LO混頻產生IF的幹擾。
· IF雜散—IF頻率的信號,其通過混頻器之前的濾波潛入,顯示為IF幹擾。
· LO輻射—來自LO的RF泄漏到接收機鏈的輸入連接器。LO輻射是可以檢測到的,即使在僅接收的工作模式下也能檢測(參見圖3)。

圖3. LO輻射泄漏通過前端返回

· 自發雜散—接收機內部的時鍾或本振混頻導致的IF雜散。

鏡像抑製特性同時適用於(yu) 第一和第二混頻級。在X和Ku波段的典型應用中,第一混頻級的中心頻率可以是5 GHz到10 GHz範圍的高IF。這裏需要高IF,原因是鏡像頻率為(wei) Ftune + 2 ×IF,如圖4所示。IF越高,鏡像頻段離得越遠。此鏡像頻段必須在其到達第一混頻器之前加以抑製,否則此範圍內(nei) 的帶外能量會(hui) 表現為(wei) 第一IF中的雜散。這是通常使用兩(liang) 個(ge) 混頻級的主要原因之一。如果隻有一個(ge) 混頻器,並且IF為(wei) 數百MHz,那麽(me) 將很難在接收機前端中抑製鏡像頻率。

圖4. 混頻進入IF的鏡像

將第一IF下變頻至第二IF時,第二混頻器也存在一個(ge) 鏡像頻段。第二IF的頻率較低(幾百MHz到2 GHz),故第一IF濾波器的濾波要求可能視情況而不同。對於(yu) 第二IF為(wei) 幾百MHz的典型應用,高頻第一IF的濾波可能非常困難,需要很大的定製濾波器。這常常是係統中最難設計的濾波器,因為(wei) 頻率很高且抑製要求通常很窄。

除鏡像抑製外,還必須有力地濾除從(cong) 混頻器返回接收輸入連接器的LO功率水平。這樣可確保無法因為(wei) 輻射功率而檢測到用戶。為(wei) 此,LO應遠離RF通帶,確保可以實現充分濾波。

高中頻架構概述

最新集成收發器產(chan) 品包括AD9371,它是一款300 MHz至6 GHz直接變頻收發器,具有兩(liang) 個(ge) 接收通道和兩(liang) 個(ge) 發射通道。接收和發射帶寬可在8 MHz至100 MHz範圍內(nei) 調整,工作模式可配置為(wei) 頻分雙工(FDD)或時分雙工(TDD)。該器件采用12 mm2 封裝,TDD模式下功耗約為(wei) 3 W,FDD模式下功耗約為(wei) 5 W。由於(yu) 正交糾錯(QEC)校準的優(you) 勢,它實現了75 dB到80 dB的鏡像抑製性能。

圖5. AD9371直接變頻收發器功能框圖

集成收發器IC的性能進步開啟了新的可能性。AD9371集成了第二混頻器、第二IF濾波和放大、可變衰減ADC以及信號鏈的數字濾波和抽取功能。在該架構中,AD9371(其調諧範圍為(wei) 300 MHz至6 GHz)可調諧到3 GHz和6 GHz之間的頻率,直接接收第一IF(參見圖6)。其增益為(wei) 16 dB,NF為(wei) 19 dB,5.5 GHz時的OIP3為(wei) 40 dBm,故AD9371是非常理想的IF接收機。

圖6. X或Ku波段TRx,AD9371用作中頻接收機

集成收發器用作IF接收機,便不再需要像超外差接收機那樣擔心通過第二混頻器的鏡像,這可以大大降低第一IF帶的濾波需求。不過,為(wei) 了消除收發器中的二階效應,仍然需要一定的濾波。第一IF帶現在應以兩(liang) 倍的第一IF頻率提供濾波以消除此類效應,這比濾除第二鏡像和第二LO要容易得多,它可能接近數百MHz。通常,利用低成本的小型LTCC濾波器成品即可滿足此類濾波要求。

這種設計還使係統具有很高的靈活性,可針對不同應用而輕鬆加以重複使用。靈活性的表現之一是IF頻率選擇。IF選擇的一般經驗法則是讓它比經過前端濾波的目標頻譜帶寬高1 GHz至2 GHz。例如,若設計師需要4 GHz頻譜帶寬(17 GHz至21 GHz)經過前端濾波器,則IF可以位於(yu) 5 GHz頻率(比目標帶寬4 GHz高1GHz)。這有助於(yu) 前端實現濾波。如果隻需要2 GHz帶寬,可以使用3 GHz的IF。此外,AD9371具有軟件定義(yi) 特性,很容易隨時改變IF,所以特別適合需要避開阻塞信號的認知無線電應用。AD9371的帶寬也可以在8 MHz至100 MHz範圍內(nei) 輕鬆調整,有利於(yu) 避免目標信號附近的幹擾。

高中頻架構的高集成度使得最終的接收機信號鏈所占空間隻有等效超外差架構的50%左右,同時功耗降低30%。另外,高中頻架構接收機比超外差架構更為(wei) 靈活。這種架構是要求小尺寸、高性能的低SWaP市場的福音。

高中頻架構接收機頻率規劃

高中頻架構的優(you) 點之一是能夠調諧IF。當試圖創建一個(ge) 能避開幹擾雜散的頻率規劃時,這種能力特別有用。當接收到的信號在混頻器中與(yu) LO混頻並產(chan) 生一個(ge) 非IF頻段內(nei) 目標信號音的m ×n雜散時,就會(hui) 引起幹擾雜散。

混頻器依據公式m ×RF ±n ×LO產(chan) 生輸出信號和雜散,其中m和n為(wei) 整數。接收信號產(chan) 生的m ×n雜散可能落在IF頻段中;某些情況下,目標信號音會(hui) 引起一個(ge) 特定頻率的交越雜散。

例如,若觀測一個(ge) 設計為(wei) 接收12 GHz至16 GHz信號且IF為(wei) 5.1 GHz的係統,如圖7所示,則引起帶內(nei) 雜散的m ×n鏡像頻率可依據下式確定:

圖7. 12 GHz至16 GHz Rx Tx高中頻架構

在此式中,RF為(wei) 混頻器輸入端的RF頻率,其導致一個(ge) 信號音落在IF中。試舉(ju) 一例,假設接收機調諧到13 GHz,這意味著LO頻率為(wei) 18.1 GHz (5.1 GHz + 13 GHz)。將這些值代入上式,並允許m和n在0到3的範圍內(nei) 變動,則可得到如下RF公式:

結果如下表所示。

表1. 18.1 GHz LO的M ×N雜散表

m n RFsum (GHz) RFdif (GHz)
1 1 23.2 13
1 2 41.3 31.1
1 3 59.4 49.2
2 1 11.6 6.5
2 2 20.65 15.55
2 3 29.7 24.6
3 1 7.733 4.333
3 2 13.767 10.367
3 3 19.8 16.4

表中的第一行(黃色亮顯)顯示所需的13 GHz信號,它是混頻器中的1 ×1的結果。其他亮顯單元顯示可能有問題的帶內(nei) 頻率,它們(men) 可能表現為(wei) 帶內(nei) 雜散。例如,15.55 GHz信號在12 GHz到16 GHz的目標範圍內(nei) 。輸入端一個(ge) 15.55 GHz信號音與(yu) LO混頻,產(chan) 生一個(ge) 5.1GHz信號音(18.1 ×2–15.55 ×2 = 5.1 GHz)。其他未亮顯行也可能造成問題,但由於(yu) 其在帶外,可以通過輸入帶通濾波器濾除。

雜散水平取決(jue) 於(yu) 多個(ge) 因素。主要因素是混頻器的性能。混頻器從(cong) 根本上說是一個(ge) 非線性器件,其內(nei) 部會(hui) 產(chan) 生許多諧波。根據混頻器內(nei) 部二極管的匹配精度和混頻器雜散性能的優(you) 化程度,可確定輸出雜散水平。數據手冊(ce) 通常會(hui) 提供一個(ge) 混頻器雜散圖表,它可以幫助確定雜散水平。表2所示的例子是混頻器HMC773ALC3B的雜散水平表。該表給出的是雜散相對於(yu) 1 ×1目標信號音的dBc水平。

表2. HMC773ALC3B混頻器雜散表

    n ×LO
    0 1 2 3 4 5
m ×RF 0 14.2 35 32.1 50.3 61.4
–1.9 17.7 31.1 32.8 61.2
2 83 55.3 60 59.6 6 73.7 87.9
3 82.6 86.1 68 68.5 61.9 85.9
4 76 86.7 82.1 77.4 74.9 75.8
5 69.3 74.7 85.3 87 85.1 62

利用此雜散表並擴展表1中所做的分析,我們(men) 便可全麵了解哪些m ×n鏡像音可能會(hui) 幹擾接收機,以及其水平是多少。可以生成一個(ge) 電子表格,其輸出與(yu) 圖8所示相似。

圖8. 12 GHz至16 GHz Rx的m ×n鏡像

此圖中的藍色部分表示所需帶寬。線段表示不同的m ×n鏡像及其水平。由此圖很容易知道,混頻器之前需要滿足什麽(me) 樣的濾波要求才能消除幹擾。本例中有多個(ge) 鏡像雜散落在帶內(nei) ,無法濾除。下麵將說明如何利用高中頻架構的靈活性來繞開其中的一些雜散,這是超外差架構做不到的。

接收模式下避開幹擾

圖9顯示了一個(ge) 類似頻率規劃,其範圍是8 GHz到12 GHz,默認IF為(wei) 5.1 GHz。此圖是混頻器雜散的另一種視圖,顯示了中心調諧頻率與(yu) m ×n鏡像頻率的關(guan) 係,而不是之前所示的雜散水平。此圖中的1:1粗對角線表示期望的1 ×1雜散。圖上的其他直線代表m ×n鏡像。此圖左側(ce) 代表IF調諧無靈活性的部分。這種情況下,IF固定在5.1 GHz。調諧頻率為(wei) 10.2 GHz時,2 ×1鏡像雜散跨過目標信號。這意味著如果調諧到10.2 GHz,那麽(me) 很有可能附近信號會(hui) 阻塞目標信號的接收。右側(ce) 顯示了通過靈活IF調諧解決(jue) 這個(ge) 問題的辦法。這種情況下,在9.2 GHz附近時IF從(cong) 5.1 GHz切換到4.1 GHz,從(cong) 而防止交越雜散發生。

圖9. 無IF靈活性時的m ×n交越雜散(上),利用IF調諧避開交越(下)

這隻是一個(ge) 說明高中頻架構如何避開阻塞信號的簡單例子。當結合智能算法來確定幹擾並計算新的可能IF頻率時,便有許多可行的方法來構建一種能夠靈活適應任何頻譜環境的接收機。這就像確定給定範圍(通常是3 GHz到6 GHz)內(nei) 的合適IF一樣簡單,然後根據該頻率重新計算並設置LO。

高中頻架構發射機頻率規劃

同接收頻率規劃一樣,也可以利用高中頻架構的靈活性來改善發射機的雜散性能。對接收機而言,頻率成分有時是無法預測的。但對發射機而言,輸出端的雜散更容易預測。此RF成分可利用下式來預測:

其中,IF通過AD9371調諧頻率預先確定,LO通過所需輸出頻率確定。

像對待接收通道一樣,發射側(ce) 也可以生成混頻器圖表。示例如圖10所示。在此圖中,最大雜散是鏡像和LO頻率,利用混頻器之後的帶通濾波器可將其降到所需水平。在FDD係統中,雜散輸出可能會(hui) 使鄰近接收機降敏,帶內(nei) 雜散會(hui) 帶來問題,這種情況下IF調諧的靈活性便很有用。在圖10所示例子中,如果使用5.1 GHz的靜態IF,發射機輸出端會(hui) 存在一個(ge) 接近15.2 GHz的交越雜散。通過將14 GHz調諧頻率時的IF調整到4.3 GHz,便可避開該交越雜散,如圖11所示。

圖10. 無濾波的輸出雜散

圖11. 靜態IF引起交越雜散(上),利用IF調諧避開交越雜散(下)

設計示例—寬帶FDD係統

為(wei) 了展示這種架構能夠實現的性能,我們(men) 利用ADI公司成品器件構建了一個(ge) 接收機和發射機FDD係統原型,其接收頻段的工作頻率範圍配置為(wei) 12 GHz至16 GHz,發射頻率的工作頻率範圍為(wei) 8 GHz至12 GHz。使用5.1 GHz的IF來收集性能數據。接收通道的LO範圍設置為(wei) 17.1 GHz至21.1 GHz,發射通道的LO範圍設置為(wei) 13.1 GHz至17.1 GHz。原型的功能框圖如圖12所示。在該圖中,X和Ku變頻器板顯示在左側(ce) ,AD9371評估板顯示在右側(ce) 。

圖12. X和Ku波段Rx Tx FDD原型係統功能框圖

增益、噪聲係數和IIP3數據在接收下變頻器上收集,顯示於(yu) 圖13(上)中。整體(ti) 而言,增益約為(wei) 20 dB,NF約為(wei) 6 dB,IIP3約為(wei) –2dBm。利用均衡器可實現額外的增益調整,或者利用AD9371中的可變衰減器執行增益校準。

圖13. Ku波段Rx數據(上),X波段Tx數據(下)

同時也測量了發射上變頻器,並記錄其增益、P1dB和OIP3。此數據與(yu) 頻率的關(guan) 係顯示於(yu) 圖13(下)。增益約為(wei) 27 dB,P1 dB約為(wei) 22dBm,OIP3約為(wei) 32 dBm。

當此板與(yu) 集成收發器一起使用時,接收和發射的總體(ti) 特性如表3所示。

表3. 係統總體(ti) 性能表

  Rx, 12 GHz至16 GHz     Tx, 8 GHz至12 GHz
增益 36 dB   輸出功率 23 dBm
噪聲係數 6.8 dB   本底噪聲 –132 dBc/Hz
IIP3 –3 dBm   OIP3 31 dBm
Pin,最大值
 (無AGC) 
–33 dBm   OP1dB 22 dBm
帶內m ×n  –60 dBc   帶內雜散 –70 dBc
功耗 3.4 W   功耗 4.2 W

總的來說,接收機性能與(yu) 超外差架構相當,而功耗大大降低。等效超外差設計的接收機鏈功耗會(hui) 高於(yu) 5 W。此外,原型板的建造並未以縮小尺寸為(wei) 優(you) 先目標。利用適當的PCB布局技巧,並將AD9371集成到與(yu) 下變頻器相同的PCB上,采用這種架構的解決(jue) 方案總尺寸可縮小到僅(jin) 4到6平方英寸,顯著小於(yu) 需要近8到10平方英寸的等效超外差解決(jue) 方案。此外,利用多芯片模塊(MCM)或係統化封裝(SiP)等技術可進一步縮小尺寸。這些先進技術可將尺寸縮小到2至3平方英寸。

結語

本文介紹了一種切實可行的架構——高中頻架構,它可替代傳(chuan) 統方法,大幅改進SWaP。文中簡要說明了超外差架構以及接收機設計的重要規格。然後介紹高中頻架構,並闡釋其在濾波要求和集成度(可減少器件總數)方麵的優(you) 勢。我們(men) 詳細說明了如何製定頻率規劃,以及如何利用可調諧IF來避開接收機上的幹擾信號。在發射方麵,其目標是降低輸出雜散,我們(men) 提出了一種避開帶內(nei) 雜散的辦法,以及預測所有可能存在的輸出雜散產(chan) 物的方法。

這種架構的實現得益於(yu) 近年來集成式直接變頻接收機的迅猛發展。隨著AD9371的誕生,通過高級校準和高集成度可實現更高的性能。這種架構在未來的低SWaP市場會(hui) 變得特別重要。

作者:

Brad Hall是ADI公司航空航天與(yu) 防務部門(位於(yu) 美國北卡羅來納州格林斯博羅)的射頻係統應用工程師,於(yu) 2015年加入ADI公司。在此之前,他是信號情報係統的射頻硬件設計工程師。他2006年畢業(ye) 於(yu) 馬裏蘭(lan) 大學,獲電氣工程學士學位。

Wyatt Taylor是ADI公司工業(ye) 和儀(yi) 器儀(yi) 表部門(位於(yu) 北卡羅萊納州格林斯博羅)的一名RF工程師, 主要致力於(yu) 集成式收發器和軟件定義(yi) 無線電(SDR)應用。之前,Wyatt曾是泰雷茲(zi) 通信公司和Digital Receiver Technology Inc.的一名RF設計工程師。他於(yu) 2005年和2006年分別獲得了弗吉尼亞(ya) 理工大學的電機工程學學士和碩士學位。Wyatt (WTaylor)是ADI公司免費的在線技術支持社區中文技術論壇的一名成員。

Tags:無線電,X和Ku波段,天線設計  
責任編輯:admin
  • 上一個文章:
  • 下一個文章: 沒有了
  • 請文明參與討論,禁止漫罵攻擊,不要惡意評論、違禁詞語。 昵稱:
    1分 2分 3分 4分 5分

    還可以輸入 200 個字
    [ 查看全部 ] 網友評論
    關於我們 - 聯係我們 - 廣告服務 - 友情鏈接 - 網站地圖 - 版權聲明 - 在線幫助 - 文章列表
    返回頂部
    刷新頁麵
    下到頁底
    晶體管查詢